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The oceans store carbon and heat

The oceans have taken up about:
• 25 % of CO2 produced by human activities;

• 90 % of excess heat.

Figure adapted from the IPCC Sixth Report (Fox-Kemper et al., 2021)
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Ocean stratification
WOCE A16 section of potential temperature

The large stratification inhibits vertical exchanges.

The ocean is mainly stratified because it is heated up at the surface.
Figures adapted, © 2011 International WOCE Office
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Ocean and atmosphere exchanges properties through the mixed layer

Winter MLD

Figure adapted from Sprintall and Cronin (2009) Figure adapted from Johnson and Lyman (2022)
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Regimes of stratification
T-S section IO9S https://cchdo.ucsd.edu/cruise/09AR20120105
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Regimes of stratification
Alpha ocean
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Regimes of stratification
Beta ocean
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Regimes of stratification
Transition zone
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Beta, transition, and alpha
T-S section IO9S, selected profiles
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Alpha and beta oceans

Called alpha – beta oceans in reference to α and β, thermodynamic properties of
seawater.

Figure adapted from Stewart and Haine (2016)

Introduction A. Alpha – beta B. Buoyancy fluxes C. TEC Conclusions 13



The thermal expansion coefficient (TEC, α)

• Cold water is usually denser than warm water.

• Ocean warms =⇒ volume increases
(1/2 of observed sea-level rise)
• The TEC quantifies the relative change of density with

temperature:

α = −1

ρ

∂ρ

∂Θ

p Public Domain
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The haline contraction coefficient (HCC, β)

• Salty water is denser than freshwater

• The HCC quantifies the relative change of density with
salinity:

β =
1

ρ

∂ρ

∂S

© 2023 Science Sparks

b aka4ajax
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Properties of the TEC and HCC

• The TEC follows a (quasi) linear relation with
temperature

• The HCC variations in the ocean are negligible
β ≃ 7.5× 10−4 kg g−1

• It was assumed that the role of salinity is
enhanced in polar regions due to low values of
the TEC
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Figure adapted from Caneill et al. (2023)
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What is the origin of alpha and beta oceans?



Objectives

From alpha to beta ocean: Exploring the role of surface buoyancy fluxes and seawater
thermal expansion in setting the upper ocean stratification

Objective A

Describe alpha – beta
oceans using observa-
tions

Objective B

How do buoyancy fluxes
shape the upper stratifi-
cation?

Objective C

Assess the role of the
local value of the TEC.

TEC = Thermal expansion coefficient
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This thesis
Paper I

Caneill, R., Roquet, F., Madec, G., & Nycander, J. (2022). The Polar Transition from
Alpha to Beta Regions Set by a Surface Buoyancy Flux Inversion. Journal of Physical

Oceanography

100 % reproducible with few commands
https://doi.org/10.1175/JPO-D-21-0295.1 https://github.com/rcaneill/caneill-et-al-JPO-nemo-transition-zone
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This thesis
Paper II

Caneill, R., Roquet, F., & Nycander, J. (2023). Southern Ocean deep mixing band
emerges from competition between winter buoyancy loss and stratification. revision

submitted to Ocean Science

100 % reproducible with few commands
https://doi.org/10.5194/egusphere-2023-2404 https://gitlab.com/rcaneill/caneill-et-al-OS-SO-DMB
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This thesis
Paper III

Caneill, R., & Roquet, F. (2023). Temperature versus salinity: Distribution of
stratification control in the global ocean. in preparation for Ocean Science
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This thesis
Paper IV

Roquet, F., Ferreira, D., Caneill, R., Schlesinger, D., & Madec, G. (2022). Unique
thermal expansion properties of water key to the formation of sea ice on Earth.

Science Advances
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Objective A

Objective A

Describe alpha – beta
oceans using observa-
tions

Paper III

Objective B

How do buoyancy fluxes
shape the upper stratifi-
cation?

Papers I, II

Objective C

Assess the role of the
local value of the TEC.

Papers I, II, and IV

Paper III Caneill, R., & Roquet, F. (2023). Temperature versus salinity: Distribution of
stratification control in the global ocean. in preparation for Ocean Science
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Stratification Control Index (SCI) Obj. A

SCI =
α∂zΘ+ β∂zS

α∂zΘ− β∂zS
(1)

The SCI quantifies the relative effect of temperature and salinity on stratification.

SCI > 1: alpha -1 < SCI < 1: transition SCI < -1: beta
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Compute climatology of winter SCI

• Based on about 20 years of observation profiles (EN4 database)
• Compute the SCI at the bottom of winter mixed layer
• Interpolation to produce climatology
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Global maps of the winter SCI (Paper III) Obj. A
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Global maps of the winter SCI (Paper III) Obj. A
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Global maps of the winter SCI (Paper III) Obj. A
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Global maps of the winter SCI (Paper III) Obj. A
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Relation with mixed layer depth (Paper III) Obj. A

• Deep MLs mostly found
in alpha oceans
• Bimodal distribution of

the SCI, centred around
±1.5
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Objective B

Objective A

Describe alpha – beta
oceans using observa-
tions

Paper III

Objective B

How do buoyancy fluxes
shape the upper stratifi-
cation?

Papers I, II

Objective C

Assess the role of the
local value of the TEC.

Papers I, II, and IV

Paper I Caneill, R., Roquet, F., Madec, G., & Nycander, J. (2022). The Polar Transition from Alpha
to Beta Regions Set by a Surface Buoyancy Flux Inversion. Journal of Physical
Oceanography

Paper II Caneill, R., Roquet, F., & Nycander, J. (2023). Southern Ocean deep mixing band
emerges from competition between winter buoyancy loss and stratification. revision
submitted to Ocean Science
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Numerical model (Paper I) Obj. B
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Idealised configuration that allows to study the role of annual buoyancy fluxes, by
modification of the equation of state (thus changing the TEC).
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Annual buoyancy fluxes set the transition (Paper I) Obj. B
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Poleward shift of the PTZ with increased TEC (Paper I) Obj. B
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Winter buoyancy loss erodes stratification (Paper II) Obj. B
(a) B250 (b) CS
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• B250: measure of stratification
• BCS : buoyancy loss
• Hatched region: the DMB

• The position of the deep MLs is set by
the balance between buoyancy loss
and stratification
• Buoyancy fluxes control the

stratification regimes

DMB = deep mixing band
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Winter buoyancy loss erodes stratification (Paper II) Obj. B
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Objective C

Objective A

Describe alpha – beta
oceans using observa-
tions

Paper III

Objective B

How do buoyancy fluxes
shape the upper stratifi-
cation?

Papers I, II

Objective C

Assess the role of the
local value of the TEC.

Papers I, II, and IV

Paper I Caneill, R., Roquet, F., Madec, G., & Nycander, J. (2022). The Polar Transition from Alpha
to Beta Regions Set by a Surface Buoyancy Flux Inversion. Journal of Physical
Oceanography

Paper II Caneill, R., Roquet, F., & Nycander, J. (2023). Southern Ocean deep mixing band
emerges from competition between winter buoyancy loss and stratification. revision
submitted to Ocean Science

Paper IV Roquet, F., Ferreira, D., Caneill, R., Schlesinger, D., & Madec, G. (2022). Unique thermal
expansion properties of water key to the formation of sea ice on Earth. Science
Advances
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The TEC varies with temperature (Paper IV) Obj. C
• Follows a (quasi) linear relation with temperature
• Decreases the impact of temperature and heat in polar regions
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Why does the TEC play a role?

The TEC scales the effect of

temperature on stratification

B250 =
g

∆t

∫ 0

−250
ααα(z)

∂Θ

∂z
zdz︸ ︷︷ ︸

BΘ
250

− g

∆t

∫ 0

−250
β(z)

∂S

∂z
zdz︸ ︷︷ ︸

BS
250

(2)

heat fluxes on buoyancy fluxes

Bsurf = ααα
g

ρ0Cp
Qtot︸ ︷︷ ︸

BsurfΘ

− gβS

ρ0
(E − P −R)︸ ︷︷ ︸
BsurfS

(3)

ααα is the TEC
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The impact of the variable TEC (Paper II) Obj. C
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• Beta oceans exist because the TEC becomes small
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Conclusions

Describe alpha – beta oceans using observations. Obj. A
• Global zonation: alpha→ transition zone→ beta
• ML deeper in alpha- than beta-oceans

How do buoyancy fluxes shape the upper stratification? Obj. B
• The transition zone is located at the sign inversion of annual buoyancy fluxes
• Buoyancy loss erodes stratification and produces the DMB

Assess the role of the local value of the TEC. Obj. C
• The decrease in the TEC in polar regions decreases buoyancy loss
• The small polar value of the TEC permits beta ocean formation
• My thesis confirms that the origin of alpha – beta oceans lies in thermodynamic

of seawater
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Perspectives

• The sea surface temperature exerts a strong control on the stratification by its
link with TEC.
• Buoyancy fluxes are not simply the sum of heat and freshwater fluxes.
• Warming =⇒ larger values of the TEC. But also increases freshwater fluxes in

the polar regions. Who will win?
• Sea ice only forms in beta ocean. A poleward shift of the PTZ could amplify

climate change.

Introduction A. Alpha – beta B. Buoyancy fluxes C. TEC Conclusions 63



References

Caneill, R., & Roquet, F. (2023). Temperature versus salinity: Distribution of stratification
control in the global ocean. in preparation for Ocean Science.

Caneill, R., Roquet, F., Madec, G., & Nycander, J. (2022). The Polar Transition from Alpha to
Beta Regions Set by a Surface Buoyancy Flux Inversion. Journal of
Physical Oceanography, 52(8), 1887–1902.
https://doi.org/10.1175/JPO-D-21-0295.1

Caneill, R., Roquet, F., & Nycander, J. (2023). Southern Ocean deep mixing band emerges
from competition between winter buoyancy loss and stratification.
revision submitted to Ocean Science.
https://doi.org/10.5194/egusphere-2023-2404

Carmack, E. C. (2007). The alpha/beta ocean distinction: A perspective on freshwater fluxes,
convection, nutrients and productivity in high-latitude seas. Deep Sea
Research Part II: Topical Studies in Oceanography, 54(23-26), 2578–2598.
https://doi.org/10.1016/j.dsr2.2007.08.018

CCHDO Hydrographic Data Office. (2023). CCHDO Hydrographic Data Archive, Version
2023-11-21 [In CCHDO Hydrographic Data Archive].
https://doi.org/10.6075/J0CCHAM8

de Boyer Montégut, C. (2023). Mixed layer depth climatology computed with a density
threshold criterion of 0.03kg/m3 from 10 m depth value.
https://doi.org/10.17882/91774

DuVivier, A. K., Large, W. G., & Small, R. J. (2018). Argo Observations of the Deep Mixing
Band in the Southern Ocean: A Salinity Modeling Challenge. Journal of
Geophysical Research: Oceans, 123(10), 7599–7617.
https://doi.org/10.1029/2018JC014275

Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., & Wunsch, C. (2015). Ecco
version 4: An integrated framework for non-linear inverse modeling and
global ocean state estimation. Geoscientific Model Development, 8(10),
3071–3104. https://doi.org/10.5194/gmd-8-3071-2015

Fox-Kemper, B., Hewitt, H., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S., Edwards, T.,
Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz, D., Nowicki, S.,
Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, A., & Yu, Y. (2021). Cross-chapter
box 9.1, figure 1. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. Connors,
C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. Gomis, M. Huang,
K. Leitzell, E. Lonnoy, J. Matthews, T. Maycock, T. Waterfield, O. Yelekçi,
R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis
(pp. 1211–1362). Cambridge University Press.
https://doi.org/10.1017/9781009157896.011

Johnson, G. C., & Lyman, J. M. (2022). GOSML: A Global Ocean Surface Mixed Layer
Statistical Monthly Climatology: Means, Percentiles, Skewness, and
Kurtosis. Journal of Geophysical Research: Oceans, 127(1),
e2021JC018219. https://doi.org/10.1029/2021JC018219

Park, Y.-H., Park, T., Kim, T.-W., Lee, S.-H., Hong, C.-S., Lee, J.-H., Rio, M.-H., Pujol, M.-I.,
Ballarotta, M., Durand, I., & Provost, C. (2019). Observations of the
Antarctic Circumpolar Current Over the Udintsev Fracture Zone, the
Narrowest Choke Point in the Southern Ocean. Journal of Geophysical
Research: Oceans, 124(7), 4511–4528.
https://doi.org/10.1029/2019JC015024

Roquet, F., Ferreira, D., Caneill, R., Schlesinger, D., & Madec, G. (2022). Unique thermal
expansion properties of water key to the formation of sea ice on Earth.
Science Advances, 8(46). https://doi.org/10.1126/sciadv.abq0793

Sprintall, J., & Cronin, M. F. (2009). Upper Ocean Vertical Structure. In J. H. Steele (Ed.),
Encyclopedia of Ocean Sciences (Second Edition) (Second Edition,
pp. 217–224). Academic Press.
https://doi.org/https://doi.org/10.1016/B978-012374473-9.00627-5

Stewart, K. D., & Haine, T. W. N. (2016). Thermobaricity in the Transition Zones between
Alpha and Beta Oceans. Journal of Physical Oceanography, 46(6),
1805–1821. https://doi.org/10.1175/JPO-D-16-0017.1

References Paper I Paper II Paper III Paper IV 64

https://doi.org/10.1175/JPO-D-21-0295.1
https://doi.org/10.5194/egusphere-2023-2404
https://doi.org/10.1016/j.dsr2.2007.08.018
https://doi.org/10.6075/J0CCHAM8
https://doi.org/10.17882/91774
https://doi.org/10.1029/2018JC014275
https://doi.org/10.5194/gmd-8-3071-2015
https://doi.org/10.1017/9781009157896.011
https://doi.org/10.1029/2021JC018219
https://doi.org/10.1029/2019JC015024
https://doi.org/10.1126/sciadv.abq0793
https://doi.org/https://doi.org/10.1016/B978-012374473-9.00627-5
https://doi.org/10.1175/JPO-D-16-0017.1


Figure from (DuVivier et al., 2018).
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Mixed layer depth climatology in the SO
with the major ACC fronts in (a) April and
(b) September. From north to south, the NB
(maroon colour), SAF (yellow), PF (red), and
SB (purple) fronts from Park et al. (2019) are
plotted. Hatches and white contour repre-
sent the DMB. For these maps, and for the
following maps of this paper, the northern
boundary is at 30 ◦S. In latitude, grid lines
are spaced every 10 degrees, with black
lines at 40 ◦S and 60 ◦S.
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every 10 degrees, with black lines at 40 ◦S
and 60 ◦S.
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Fig. 4
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Climatology of the annual components of
the Ekman induced buoyancy fluxes, and
the sum with the surface fluxes. The sub-
plots are organized as follows: the columns
show the Ekman fluxes and the sum of Ek-
man and surface. The rows show the ther-
mal component, haline component, and
their sum.
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Fig. 5
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(a) Winter MLD. The shading represents re-
spectively the 5th – 95th, and 25th – 75th
percentiles, and the solid line is the zonal
median. Mixed layers deeper than 250 m are
found between 40 ◦S and 60 ◦S depending
on the SO sector. (b) annual mean of the
buoyancy flux components, (c) cooling sea-
son means, and (d) warming season means.
The solid lines are the zonal medians, and
the shading represents the region between
the 25th and 75th percentiles. The black
line is B the sum of surface and Ekman
fluxes. The vertical grid spacing is constant
between panels. The black, green, and pur-
ple colours are for the total, heat surface,
and salt surface components. The majority
of the zonal differences arise from the sur-
face heat component. The gray box in the
bottom represents a median position of the
ACC.
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Fig. 6
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Climatology of (a) the thermal and (b) haline
components of B250, computed in April.
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Fig. 7

(a) B250 (b) CS

(c) B250 CS

1.35

0.90

0.45

0.00

0.45

0.90

1.35

[m
2
s

3 ]

1e 7

Climatology of (a) the intensity of late sum-
mer stratification characterised byB250, (b)
the buoyancy fluxes during the cooling sea-
son, and (c) the difference B250 − BCS .
The hatches surrounded by the black con-
tour represent the DMB.
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Fig. 8
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B250 (orange curves) and BCS (blue
curves) (upper row), and observed winter
MLD (green curve in lower row), for 3
different transects in the Atlantic, Indian,
and Pacific sectors of the SO. The gray box
represent the DMB.
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Fig. 9
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Buoyancy fluxes during the cooling sea-
son (blue) and B250, the buoyancy fluxes
needed to produce a 250 m deep mixed
layer (orange). (a) is computed using the
realistic varying TEC and (b) is computed
withα0. Shaded areas correspond to the 1st
and 3rd quartiles, and the solid lines are the
zonal medians. This plot extends to 20 ◦S
to highlight the increase of stratification to-
wards the tropics, and the maximum buoy-
ancy loss located around 30 ◦S.
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Fig. 10
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Stratification and buoyancy fluxes and com-
puted using the nonlinear EOS or a constant
α0. In panels (a) and (c), black dashed lines
are for the nonlinear EOS, and blue or or-
ange continuous lines are with constant α0.
The spacing between the horizontal dotted
gray line is the same in these two panels and
equal to 2× 10−8 m2 s−3 The light shad-
ings correspond to the 25th and 75th per-
centiles. Panels (b) and (d) are the difference
between using the varying TEC and the con-
stant α0, for B250 and BCS respectively.
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Fig. 11

(a) B250 (b) CS

(c) B250 CS
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Same as Fig. 7 but using α0 in compu-
tations. Hence, (c) represents where the
ocean could form the DMB if the TEC was
constant. The hatches represent the ob-
served DMB. The region with sea-ice around
Antarctica is masked in white.
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Fig. A1
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Heat fluxes (first row) and surface buoy-
ancy fluxes (second row) are presented. The
first column is the climatology annual mean
without any correction, the second column
is with our adjustment, and the 3rd column
has been computed with the fluxes from
ECCO.
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Fig. B1
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Climatology of the annual, Cooling Season,
and Warming Season surface heat compo-
nent of the buoyancy flux.
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Fig. C1

(a) B200 CS (b) B350 CS
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Balance between the columnar buoyancy
and buoyancy loss using a depth of (a)
200 and (b) 350 m as threshold for the
DMB (hatched area) and columnar buoy-
ancy (B200 and B350, respectively).
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Paper II
Using only surface buoyancy in balance

(a) B250 (b) CS
surf
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Only surface buoyancy fluxes are used

Climatology of (a) the intensity of late sum-
mer stratification characterised byB250, (b)
the surface buoyancy fluxes during the cool-
ing season, and (c) the difference B250 −
BCS
surf . The hatches surrounded by the

black contour represent the DMB.
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Fig. 1
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Data are from the hydrographic cruise
09AR20120105 (CCHDO Hydrographic Data
Office, 2023). The vertical lines mark the
boundaries of, from north to south, alpha
ocean, transition zone, and beta ocean.
These boundaries are determined by the
Subantarctic Front (SAF, black line) and the
Polar Front (PF, purple line). The white and
dashed line represents the climatological
winter mixed layer depth (from (de Boyer
Montégut, 2023)). The three bottom panels
correspond to the three dots of the upper
panels. The black crosses on the left vertical
axes represent the climatological winter
mixed layer depth.
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Fig. 2

Number of profiles in a circle of distance 1
of each grid point for the month March. All
years are taken into account. The distance
is unitless.
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Fig. 3

Climatologies of winter (deepest) and sum-
mer (shallowest) MLD. In the SO, the 3 gray
lines represent from north to south the SAF,
the PF, and the SACCF.
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Fig. 4

Standard deviation of monthly MLD for
2004–2021 period in March and September.
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Fig. 5

Time series of the MLD north of the Kergue-
len Plateau, in the deep mixing band of the
SO. The bathymetry and location of the pro-
files are shown in the upper row, the middle
row presents the time series of the profiles
MLD, the median and quartiles of monthly
binned profiles, and our monthly interpo-
lated product. The ticks and vertical lines
are plotted the 1st of January of the years.
The bottom row present our monthly clima-
tology. All profiles in a distance 1 of the
point (85.5E, 42.5S) are used.
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Fig. 6

Time series of the MLD in the Irminger Sea.
The bathymetry and location of the pro-
files are shown in the upper row, the middle
row presents the time series of the profiles
MLD, the median and quartiles of monthly
binned profiles, and our monthly interpo-
lated product. The ticks and vertical lines
are plotted the 1st of January of the years.
The bottom row present our monthly clima-
tology. All profiles in a distance 1 of the
point (325.5E, 61.5) are used.
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Fig. 7
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Climatologies of winter (deepest) and sum-
mer (shallowest) MLD. In the SO, the 3 gray
lines represent from north to south the SAF,
the PF, and the SACCF.
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Fig. 8
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Zonal climatology of winter (green) and
summer (orange) SCI below the mixed layer.
The lines are the zonal means, and the shad-
ings are the 10th and 90th percentiles. The
middle lines are the global zonal means.
The upper and lower lines, starting at 20◦S,
separate the Pacific basin, where the SCI
is approximately zonally constant, from the
Atlantic basin, where the SCI encounters
large longitudinal variations. The Atlantic
and Pacific zonal means have been shifted
vertically for clarity, and they refer to their
own axis on the right. The gray bands repre-
sent −1 < SCI < 1.
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Fig. 9

180° 90°W 0°W 90°E 180°

80°S

60°S

40°S

20°S

0°

20°N

40°N

60°N

80°N

winter SCI climatology

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

SC
I b

el
ow

 th
e 

wi
nt

er
 m

ixe
d 

la
ye

r [
un

itl
es

s]
4 2 0 2 4

sci winter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity region
SAZ
PFZ
AAZ
SACCZ

0°

80°S

70°S

60°S

50°S

40°S

30°S

summer SCI climatology

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

st
ra

tif
ica

tio
n 

co
nt

ro
l i

nd
ex

un
de

r t
he

 su
m

m
er

 m
ixe

d 
la

ye
r

[1
]

4 2 0 2 4
sci summer

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity region
SAZ
PFZ
AAZ
SACCZ

Climatology of the winter / summer SCI (left
column), and histograms of the SCI per zone
of the SO (right column).
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Fig. 10

Time series of the SCI in the DMB, north of
the Kerguelen Plateau. The location in alpha
ocean in winter.
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Fig. 11

Time series of the SCI south-west of the
Kerguelen Plateau. The location is in beta
ocean in winter.
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Fig. 12
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SCI versus MLD in winter (left) and summer
(right). The centre figures represent a 2 di-
mensions histogram (colours), with a kernel
density estimation (contour lines) superim-
posed. For the centre figures, only data with
a latitude |φ| > 30◦ are shown. The his-
tograms on the sides are split into the trop-
ical regions (|φ| < 30◦) in purple, and the
rest of the ocean (|φ| > 30◦) in red. The
upper histograms are for the MLD, and the
histograms on the right are for the SCI. Data
are taken from the 1◦ climatologies. Each
data point is weighted by the area of its cor-
responding cell of the 1◦ grid.
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Fig. A1
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Fig. B1
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Mean of the MLD versus the standard devia-
tion (for winter). The means are taken along
years of the monthly product.
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Fig. 1
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(a) TEC function of depth
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Variation of the Thermal Expansion co-
efficient (TEC) with respect to tempera-
ture, salinity and depth. (a) TEC func-
tion of temperature and depth for freshwa-
ter, i. e. at salinity S=0 g kg−1. Here, depth
is taken proportional to pressure (1 m ≃ 1
dbar). (b) Variation of the TEC with respect
to temperature and salinity at atmospheric
pressure p=0 dbar. The typical salinity range
of seawater is indicated with light solid con-
tours. The TEC decreases quasi linearly with
respect to temperature, pressure and salin-
ity. In both panels, the dashed line indicates
the freezing point, while the solid line indi-
cates where the TEC changes sign.
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Fig. 2
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Stratification control and surface TEC in
the ocean. (a) Surface distribution of the
TEC, showing a striking correlation with sea
surface temperature. (b) Zonal-mean TEC
showing an order of magnitude of var. (c)
Stratification control index (SCI, see core
text for the definition). Blue: stratification
dominated by salinity (beta regions), red:
dominated by temperature (alpha regions).
(d) Zonal-mean SCI. All figures are based on
the ECCO state estimate, version 4, Release
4 (Forget et al., 2015). For each year, the SCI
was computed on the layer found between
10 m and 30 m below the mixed layer for the
month of deepest mixed layer. The SCI dis-
tribution is obtained by averaging over the
21 years available in ECCO.
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Fig. 3
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Climate model sensitivity to different
prescribed TECs. (a) sea ice area, (b) sea
surface temperature (0-40 m, blue) and bot-
tom temperature (3000-4000 m, red) and c)
sea surface salinity (blue) and bottom salin-
ity (red). Bottom values are averaged over
the lowest kilometer (3000-4000 m) while
surface values are averaged over the top
40 m. The horizontal lines denote the cor-
responding values in Ctrl.
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Fig. 4
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Global modifications of the mean ther-
mohaline stratification for different pre-
scribed TECs. Zonally-averaged sections
of temperature (top) and salinity (bottom):
(a-d) Ctrl, (b-e) Lin2.0, and (c-f) Lin0.5.
Dashed orange lines in upper left corner
denote the zonally reentrant section above
the seal and south of the continents. Blue
squares indicate the sea ice extent.
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Fig. 5
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Relative contributions of temperature
and salinity on the stratification con-
trolled by the TEC. (a) Zonally-averaged
haline (N2

S ) and thermal (N2
Θ) buoyancy

frequencies averaged from surface to bot-
tom, shown for the control run and the three
sensitivity experiments. (b) SCI computed
using vertically and zonally averaged buoy-
ancy frequencies. The mean SCI of Ctrl
compares well with that of Lin0.5 in po-
lar regions, especially in the Southern ice-
covered domain, but is closer to Lin2.0 and
Lin3.5 in sub-tropical regions. These varia-
tions in SCI are consistent with changes in
surface TEC in Ctrl related to sea surface
temperature changes.
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